Computational experiments successfully predict the emergence of autocorrelations in ultra-high-frequency stock returns (1404.1051v2)
Abstract: Social and economic systems are complex adaptive systems, in which heterogenous agents interact and evolve in a self-organized manner, and macroscopic laws emerge from microscopic properties. To understand the behaviors of complex systems, computational experiments based on physical and mathematical models provide a useful tools. Here, we perform computational experiments using a phenomenological order-driven model called the modified Mike-Farmer (MMF) to predict the impacts of order flows on the autocorrelations in ultra-high-frequency returns, quantified by Hurst index $H_r$. Three possible determinants embedded in the MMF model are investigated, including the Hurst index $H_s$ of order directions, the Hurst index $H_x$ and the power-law tail index $\alpha_x$ of the relative prices of placed orders. The computational experiments predict that $H_r$ is negatively correlated with $\alpha_x$ and $H_x$ and positively correlated with $H_s$. In addition, the values of $\alpha_x$ and $H_x$ have negligible impacts on $H_r$, whereas $H_s$ exhibits a dominating impact on $H_r$. The predictions of the MMF model on the dependence of $H_r$ upon $H_s$ and $H_x$ are verified by the empirical results obtained from the order flow data of 43 Chinese stocks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.