2000 character limit reached
Fractional Sobolev and Hardy-Littlewood-Sobolev inequalities (1404.1028v2)
Published 3 Apr 2014 in math.FA and math.AP
Abstract: This work focuses on an improved fractional Sobolev inequality with a remainder term involving the Hardy-Littlewood-Sobolev inequality which has been proved recently. By extending a recent result on the standard Laplacian to the fractional case, we offer a new, simpler proof and provide new estimates on the best constant involved. Using endpoint differentiation, we also obtain an improved version of a Moser-Trudinger-Onofri type inequality on the sphere. As an immediate consequence, we derive an improved version of the Onofri inequality on the Euclidean space using the stereographic projection.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.