Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Counting Triangulations and other Crossing-Free Structures Approximately (1404.0261v1)

Published 1 Apr 2014 in cs.CG and cs.DS

Abstract: We consider the problem of counting straight-edge triangulations of a given set $P$ of $n$ points in the plane. Until very recently it was not known whether the exact number of triangulations of $P$ can be computed asymptotically faster than by enumerating all triangulations. We now know that the number of triangulations of $P$ can be computed in $O{*}(2{n})$ time, which is less than the lower bound of $\Omega(2.43{n})$ on the number of triangulations of any point set. In this paper we address the question of whether one can approximately count triangulations in sub-exponential time. We present an algorithm with sub-exponential running time and sub-exponential approximation ratio, that is, denoting by $\Lambda$ the output of our algorithm, and by $c{n}$ the exact number of triangulations of $P$, for some positive constant $c$, we prove that $c{n}\leq\Lambda\leq c{n}\cdot 2{o(n)}$. This is the first algorithm that in sub-exponential time computes a $(1+o(1))$-approximation of the base of the number of triangulations, more precisely, $c\leq\Lambda{\frac{1}{n}}\leq(1 + o(1))c$. Our algorithm can be adapted to approximately count other crossing-free structures on $P$, keeping the quality of approximation and running time intact. In this paper we show how to do this for matchings and spanning trees.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.