Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Emotion Analysis Platform on Chinese Microblog (1403.7335v1)

Published 28 Mar 2014 in cs.CL, cs.CY, and cs.IR

Abstract: Weibo, as the largest social media service in China, has billions of messages generated every day. The huge number of messages contain rich sentimental information. In order to analyze the emotional changes in accordance with time and space, this paper presents an Emotion Analysis Platform (EAP), which explores the emotional distribution of each province, so that can monitor the global pulse of each province in China. The massive data of Weibo and the real-time requirements make the building of EAP challenging. In order to solve the above problems, emoticons, emotion lexicon and emotion-shifting rules are adopted in EAP to analyze the emotion of each tweet. In order to verify the effectiveness of the platform, case study on the Sichuan earthquake is done, and the analysis result of the platform accords with the fact. In order to analyze from quantity, we manually annotate a test set and conduct experiment on it. The experimental results show that the macro-Precision of EAP reaches 80% and the EAP works effectively.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.