Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning detectors quickly using structured covariance matrices

Published 28 Mar 2014 in cs.CV | (1403.7321v1)

Abstract: Computer vision is increasingly becoming interested in the rapid estimation of object detectors. Canonical hard negative mining strategies are slow as they require multiple passes of the large negative training set. Recent work has demonstrated that if the distribution of negative examples is assumed to be stationary, then Linear Discriminant Analysis (LDA) can learn comparable detectors without ever revisiting the negative set. Even with this insight, however, the time to learn a single object detector can still be on the order of tens of seconds on a modern desktop computer. This paper proposes to leverage the resulting structured covariance matrix to obtain detectors with identical performance in orders of magnitude less time and memory. We elucidate an important connection to the correlation filter literature, demonstrating that these can also be trained without ever revisiting the negative set.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.