Towards the Turaev-Viro amplitudes from a Hamiltonian constraint
Abstract: 3D Loop Quantum Gravity with a vanishing cosmological constant can be related to the quantization of the $\textrm{SU}(2)$ BF theory discretized on a lattice. At the classical level, this discrete model characterizes discrete flat geometries and its phase space is built from $T\ast \textrm{SU}(2)$. In a paper \cite{HyperbolicPhaseSpace}, this discrete model was deformed using the Poisson-Lie group formalism and was shown to characterize discrete hyperbolic geometries while being still topological. Hence, it is a good candidate to describe the discretization of $\textrm{SU}(2)$ BF theory with a (negative) cosmological constant. We proceed here to the quantization of this model. At the kinematical level, the Hilbert space is spanned by spin networks built on $\mathcal{U}{q}(\mathfrak{su}(2))$ (with $q$ real). In particular, the quantization of the discretized Gauss constraint leads naturally to $\mathcal{U}{q}(\mathfrak{su}(2))$ intertwiners. We also quantize the Hamiltonian constraint on a face of degree 3 and show that physical states are proportional to the quantum 6j-symbol. This suggests that the Turaev-Viro amplitude with $q$ real is a solution of the quantum Hamiltonian. This model is therefore a natural candidate to describe 3D loop quantum gravity with a (negative) cosmological constant.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.