Papers
Topics
Authors
Recent
2000 character limit reached

Partition functions and the continuum limit in Penner matrix models (1403.6943v2)

Published 27 Mar 2014 in math-ph, math.MP, and nlin.SI

Abstract: We present an implementation of the method of orthogonal polynomials which is particularly suitable to study the partition functions of Penner random matrix models, to obtain their explicit forms in the exactly solvable cases, and to determine the coefficients of their perturbative expansions in the continuum limit. The method relies on identities satisfied by the resolvent of the Jacobi matrix in the three-term recursion relation of the associated families of orthogonal polynomials. These identities lead to a convenient formulation of the string equations. As an application, we show that in the continuum limit the free energy of certain exactly solvable models like the linear and double Penner models can be written as a sum of gaussian contributions plus linear terms. To illustrate the one-cut case we discuss the linear, double and cubic Penner models, and for the two-cut case we discuss theoretically and numerically the existence of a double-branch structure of the free energy for the gaussian Penner model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.