Papers
Topics
Authors
Recent
2000 character limit reached

On correlation functions in the coordinate and the algebraic Bethe ansatz

Published 26 Mar 2014 in hep-th | (1403.6651v2)

Abstract: The Bethe ansatz, both in its coordinate and its algebraic version, is an exceptional method to compute the eigenvectors and eigenvalues of integrable systems. However, computing correlation functions using the eigenvectors thus constructed complicates rather fast. In this article, we will compute some simple correlation functions for the isotropic Heisenberg spin chain to highlight the shortcomings of both Bethe ans\"atze. In order to compare the results obtained from each approach, a discussion on the normalization of states in each ansatz will be required. We will show that the analysis can be extended to the long-range spin chain governing the spectrum of anomalous dimensions of single trace operators in four-dimensional Yang-Mills with maximal supersymmetry.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.