Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CFT4 as SO(4,2)-invariant TFT2 (1403.6646v2)

Published 26 Mar 2014 in hep-th, math-ph, math.MP, and math.RT

Abstract: We show that correlators of local operators in four dimensional free scalar field theory can be expressed in terms of amplitudes in a two dimensional topological field theory (TFT2). We describe the state space of the TFT2, which has $SO(4,2)$ as a global symmetry, and includes both positive and negative energy representations. Invariant amplitudes in the TFT2 correspond to surfaces interpolating from multiple circles to the vacuum. They are constructed from SO(4,2) invariant linear maps from the tensor product of the state spaces to complex numbers. When appropriate states labeled by 4D-spacetime coordinates are inserted at the circles, the TFT2 amplitudes become correlators of the four-dimensional CFT4. The TFT2 structure includes an associative algebra, related to crossing in the 4D-CFT, with a non-degenerate pairing related to the CFT inner product in the CFT4. In the free-field case, the TFT2/CFT4 correspondence can largely be understood as realization of free quantum field theory as a categorified form of classical invariant theory for appropriate SO(4,2) representations. We discuss the prospects of going beyond free fields in this framework.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.