Papers
Topics
Authors
Recent
2000 character limit reached

Testing for independence between functional time series (1403.5710v1)

Published 22 Mar 2014 in math.ST and stat.TH

Abstract: Frequently econometricians are interested in verifying a relationship between two or more time series. Such analysis is typically carried out by causality and/or independence tests which have been well studied when the data is univariate or multivariate. Modern data though is increasingly of a high dimensional or functional nature for which finite dimensional methods are not suitable. In the present paper we develop methodology to check the assumption that data obtained from two functional time series are independent. Our procedure is based on the norms of empirical cross covariance operators and is asymptotically validated when the underlying populations are assumed to be in a class of weakly dependent random functions which include the functional ARMA, ARCH and GARCH processes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.