Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On efficient dimension reduction with respect to a statistical functional of interest (1403.5483v1)

Published 21 Mar 2014 in math.ST and stat.TH

Abstract: We introduce a new sufficient dimension reduction framework that targets a statistical functional of interest, and propose an efficient estimator for the semiparametric estimation problems of this type. The statistical functional covers a wide range of applications, such as conditional mean, conditional variance and conditional quantile. We derive the general forms of the efficient score and efficient information as well as their specific forms for three important statistical functionals: the linear functional, the composite linear functional and the implicit functional. In conjunction with our theoretical analysis, we also propose a class of one-step Newton-Raphson estimators and show by simulations that they substantially outperform existing methods. Finally, we apply the new method to construct the central mean and central variance subspaces for a data set involving the physical measurements and age of abalones, which exhibits a strong pattern of heteroscedasticity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.