Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Kronecker Coefficients For Some Near-Rectangular Partitions (1403.5327v1)

Published 21 Mar 2014 in math.CO

Abstract: We give formulae for computing Kronecker coefficients occurring in the expansion of $s_{\mu}*s_{\nu}$, where both $\mu$ and $\nu$ are nearly rectangular, and have smallest parts equal to either 1 or 2. In particular, we study $s_{(n,n-1,1)}*s_{(n,n)}$, $s_{(n-1,n-1,1)}*s_{(n,n-1)}$, $s_{(n-1,n-1,2)}*s_{(n,n)}$, $s_{(n-1,n-1,1,1)}*s_{(n,n)}$ and $s_{(n,n,1)}*s_{(n,n,1)}$. Our approach relies on the interplay between manipulation of symmetric functions and the representation theory of the symmetric group, mainly employing the Pieri rule and a useful identity of Littlewood. As a consequence of these formulae, we also derive an expression enumerating certain standard Young tableaux of bounded height, in terms of the Motzkin and Catalan numbers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube