Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Differential Calculus on Graphon Space (1403.3736v2)

Published 15 Mar 2014 in math.CO and math.FA

Abstract: Recently, the theory of dense graph limits has received attention from multiple disciplines including graph theory, computer science, statistical physics, probability, statistics, and group theory. In this paper we initiate the study of the general structure of differentiable graphon parameters $F$. We derive consistency conditions among the higher G^ateaux derivatives of $F$ when restricted to the subspace of edge weighted graphs $\mathcal{W}{\bf p}$. Surprisingly, these constraints are rigid enough to imply that the multilinear functionals $\Lambda: \mathcal{W}{\bf p}n \to \mathbb{R}$ satisfying the constraints are determined by a finite set of constants indexed by isomorphism classes of multigraphs with $n$ edges and no isolated vertices. Using this structure theory, we explain the central role that homomorphism densities play in the analysis of graphons, by way of a new combinatorial interpretation of their derivatives. In particular, homomorphism densities serve as the monomials in a polynomial algebra that can be used to approximate differential graphon parameters as Taylor polynomials. These ideas are summarized by our main theorem, which asserts that homomorphism densities $t(H,-)$ where $H$ has at most $N$ edges form a basis for the space of smooth graphon parameters whose $(N+1)$st derivatives vanish. As a consequence of this theory, we also extend and derive new proofs of linear independence of multigraph homomorphism densities, and characterize homomorphism densities. In addition, we develop a theory of series expansions, including Taylor's theorem for graph parameters and a uniqueness principle for series. We use this theory to analyze questions raised by Lov\'asz, including studying infinite quantum algebras and the connection between right- and left-homomorphism densities.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube