A Bound for the Eigenvalue Counting Function for Higher-Order Krein Laplacians on Open Sets (1403.3731v4)
Abstract: For an arbitrary nonempty, open set $\Omega \subset \mathbb{R}n$, $n \in \mathbb{N}$, of finite (Euclidean) volume, we consider the minimally defined higher-order Laplacian $(- \Delta)m\big|_{C_0{\infty}(\Omega)}$, $m \in \mathbb{N}$, and its Krein--von Neumann extension $A_{K,\Omega,m}$ in $L2(\Omega)$. With $N(\lambda,A_{K,\Omega,m})$, $\lambda > 0$, denoting the eigenvalue counting function corresponding to the strictly positive eigenvalues of $A_{K,\Omega,m}$, we derive the bound $$ N(\lambda,A_{K,\Omega,m}) \leq (2 \pi){-n} v_n |\Omega| {1 + [2m/(2m+n)]}{n/(2m)} \lambda{n/(2m)}, \quad \lambda > 0, $$ where $v_n := \pi{n/2}/\Gamma((n+2)/2)$ denotes the (Euclidean) volume of the unit ball in $\mathbb{R}n$. The proof relies on variational considerations and exploits the fundamental link between the Krein--von Neumann extension and an underlying (abstract) buckling problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.