Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Bound for the Eigenvalue Counting Function for Higher-Order Krein Laplacians on Open Sets (1403.3731v4)

Published 15 Mar 2014 in math.SP, math-ph, math.AP, and math.MP

Abstract: For an arbitrary nonempty, open set $\Omega \subset \mathbb{R}n$, $n \in \mathbb{N}$, of finite (Euclidean) volume, we consider the minimally defined higher-order Laplacian $(- \Delta)m\big|_{C_0{\infty}(\Omega)}$, $m \in \mathbb{N}$, and its Krein--von Neumann extension $A_{K,\Omega,m}$ in $L2(\Omega)$. With $N(\lambda,A_{K,\Omega,m})$, $\lambda > 0$, denoting the eigenvalue counting function corresponding to the strictly positive eigenvalues of $A_{K,\Omega,m}$, we derive the bound $$ N(\lambda,A_{K,\Omega,m}) \leq (2 \pi){-n} v_n |\Omega| {1 + [2m/(2m+n)]}{n/(2m)} \lambda{n/(2m)}, \quad \lambda > 0, $$ where $v_n := \pi{n/2}/\Gamma((n+2)/2)$ denotes the (Euclidean) volume of the unit ball in $\mathbb{R}n$. The proof relies on variational considerations and exploits the fundamental link between the Krein--von Neumann extension and an underlying (abstract) buckling problem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.