Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convergence rates of empirical block length selectors for block bootstrap (1403.3275v1)

Published 13 Mar 2014 in math.ST and stat.TH

Abstract: We investigate the accuracy of two general non-parametric methods for estimating optimal block lengths for block bootstraps with time series - the first proposed in the seminal paper of Hall, Horowitz and Jing (Biometrika 82 (1995) 561-574) and the second from Lahiri et al. (Stat. Methodol. 4 (2007) 292-321). The relative performances of these general methods have been unknown and, to provide a comparison, we focus on rates of convergence for these block length selectors for the moving block bootstrap (MBB) with variance estimation problems under the smooth function model. It is shown that, with suitable choice of tuning parameters, the optimal convergence rate of the first method is $O_p(n{-1/6})$ where $n$ denotes the sample size. The optimal convergence rate of the second method, with the same number of tuning parameters, is shown to be $O_p(n{-2/7})$, suggesting that the second method may generally have better large-sample properties for block selection in block bootstrap applications beyond variance estimation. We also compare the two general methods with other plug-in methods specifically designed for block selection in variance estimation, where the best possible convergence rate is shown to be $O_p(n{-1/3})$ and achieved by a method from Politis and White (Econometric Rev. 23 (2004) 53-70).

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.