Aggregate Estimation Over Dynamic Hidden Web Databases
Abstract: Many databases on the web are "hidden" behind (i.e., accessible only through) their restrictive, form-like, search interfaces. Recent studies have shown that it is possible to estimate aggregate query answers over such hidden web databases by issuing a small number of carefully designed search queries through the restrictive web interface. A problem with these existing work, however, is that they all assume the underlying database to be static, while most real-world web databases (e.g., Amazon, eBay) are frequently updated. In this paper, we study the novel problem of estimating/tracking aggregates over dynamic hidden web databases while adhering to the stringent query-cost limitation they enforce (e.g., at most 1,000 search queries per day). Theoretical analysis and extensive real-world experiments demonstrate the effectiveness of our proposed algorithms and their superiority over baseline solutions (e.g., the repeated execution of algorithms designed for static web databases).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.