Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spatial search by continuous-time quantum walks on crystal lattices

Published 11 Mar 2014 in quant-ph | (1403.2676v2)

Abstract: We consider the problem of searching a general $d$-dimensional lattice of $N$ vertices for a single marked item using a continuous-time quantum walk. We demand locality, but allow the walk to vary periodically on a small scale. By constructing lattice Hamiltonians exhibiting Dirac points in their dispersion relations and exploiting the linear behaviour near a Dirac point, we develop algorithms that solve the problem in a time of $O(\sqrt N)$ for $d>2$ and $O(\sqrt N \log N)$ in $d=2$. In particular, we show that such algorithms exist even for hypercubic lattices in any dimension. Unlike previous continuous-time quantum walk algorithms on hypercubic lattices in low dimensions, our approach does not use external memory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.