Papers
Topics
Authors
Recent
2000 character limit reached

On deformations of Q-Fano threefolds II (1403.0212v2)

Published 2 Mar 2014 in math.AG

Abstract: We investigate some coboundary map associated to a $3$-dimensional terminal singularity which is important in the study of deformations of singular $3$-folds. We prove that this map vanishes only for quotient singularities and a $A_{1,2}/4$-singularity, that is, a terminal singularity analytically isomorphic to a $\mathbb{Z}4$-quotient of the singularity $ (x2+y2 +z3+u2=0)$. As an application, we prove that a $\mathbb{Q}$-Fano $3$-fold with terminal singularities can be deformed to one with only quotient singularities and $A{1,2}/4$-singularities. We also treat the $\mathbb{Q}$-smoothability problem on $\mathbb{Q}$-Calabi--Yau $3$-folds.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.