Spinless Topological Insulators without Time-Reversal Symmetry (1402.6323v1)
Abstract: We explore the 32 crystallographic point groups and identify topological phases of matter with robust surface modes. For n =3,4 and 6 of the C_{nv} groups, we find the first-known 3D topological insulators without spin-orbit coupling, and with surface modes that are protected only by point groups, i.e., not needing time-reversal symmetry. To describe these C_{nv} systems, we introduce the notions of (a) a halved mirror chirality: an integer invariant which characterizes half-mirror-planes in the 3D Brillouin zone, and (b) a bent Chern number: the traditional TKNN invariant generalized to bent 2D manifolds. We find that a Weyl semimetallic phase intermediates two gapped phases with distinct halved chiralities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.