An improved scoring matrix for multiple sequence alignment (1402.5327v2)
Abstract: The way for performing multiple sequence alignment is based on the criterion of the maximum scored information content computed from a weight matrix, but it is possible to have two or more alignments to have the same highest score leading to ambiguities in selecting the best alignment. This paper addresses this issue by introducing the concept of joint weight matrix to eliminate the randomness in selecting the best multiple sequence alignment. Alignments with equal scores are iteratively rescored with the joint weight matrix of increasing level (nucleotide pairs, triplets and so on) until one single best alignment is eventually found. This method for resolving ambiguity in multiple sequence alignment can be easily implemented by use of the improved scoring matrix.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.