2000 character limit reached
Index theory for manifolds with Baas-Sullivan singularities (1402.4996v2)
Published 20 Feb 2014 in math.KT and math.OA
Abstract: We study index theory for manifolds with Baas-Sullivan singularities using geometric K-homology with coefficients in a unital C*-algebra. In particular, we define a natural analog of the Baum-Connes assembly map for a torsion-free discrete group in the context of these singular spaces. The cases of singularities modelled on k-points (i.e., z/k-manifolds) and the circle are discussed in detail. In the case of the former, the associated index theorem is related to the Freed-Melrose index theorem; in the case of latter, the index theorem is related to work of Rosenberg.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.