Subgeometric rates of convergence in Wasserstein distance for Markov chains
Abstract: In this paper, we provide sufficient conditions for the existence of the invariant distribution and for subgeometric rates of convergence in Wasserstein distance for general state-space Markov chains which are (possibly) not irreducible. Compared to previous work, our approach is based on a purely probabilistic coupling construction which allows to retrieve rates of convergence matching those previously reported for convergence in total variation. Our results are applied to establish the subgeometric ergodicity in Wasserstein distance of non-linear autoregressive models and of the pre-conditioned Crank-Nicolson Markov chain Monte Carlo algorithm in Hilbert space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.