Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A scaling limit for the degree distribution in sublinear preferential attachment schemes (1402.4088v1)

Published 17 Feb 2014 in math.PR and math.CO

Abstract: We consider a general class of preferential attachment schemes evolving by a reinforcement rule with respect to certain sublinear weights. In these schemes, which grow a random network, the sequence of degree distributions is an object of interest which sheds light on the evolving structures. In this article, we use a fluid limit approach to prove a functional law of large numbers for the degree structure in this class, starting from a variety of initial conditions. The method appears robust and applies in particular to `non-tree' evolutions where cycles may develop in the network. A main part of the argument is to analyze an infinite system of coupled ODEs, corresponding to a rate formulation of the law of large numbers limit, in terms of $C_0$-semigroup/dynamical systems methods. These results also resolve a question in Chung, Handjani and Jungreis (2003).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.