Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A Unifying Model for Representing Time-Varying Graphs (1402.3488v2)

Published 14 Feb 2014 in cs.DS, cs.DM, and cs.SI

Abstract: Graph-based models form a fundamental aspect of data representation in Data Sciences and play a key role in modeling complex networked systems. In particular, recently there is an ever-increasing interest in modeling dynamic complex networks, i.e. networks in which the topological structure (nodes and edges) may vary over time. In this context, we propose a novel model for representing finite discrete Time-Varying Graphs (TVGs), which are typically used to model dynamic complex networked systems. We analyze the data structures built from our proposed model and demonstrate that, for most practical cases, the asymptotic memory complexity of our model is in the order of the cardinality of the set of edges. Further, we show that our proposal is an unifying model that can represent several previous (classes of) models for dynamic networks found in the recent literature, which in general are unable to represent each other. In contrast to previous models, our proposal is also able to intrinsically model cyclic (i.e. periodic) behavior in dynamic networks. These representation capabilities attest the expressive power of our proposed unifying model for TVGs. We thus believe our unifying model for TVGs is a step forward in the theoretical foundations for data analysis of complex networked systems.

Citations (97)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube