On restricted sumsets over a field
Abstract: We consider restricted sumsets over field $F$. Let\begin{align*}C={a_1+\cdots+a_n:a_1\in A_1,\ldots,a_n\in A_n, a_i-a_j\notin S_{ij}\ \text{if}\ i\not=j},\end{align*} where $S_{ij}(1\leqslant i\not=j\leqslant n)$ are finite subsets of $F$ with cardinality $m$, and $A_1,\ldots, A_n$ are finite nonempty subsets of $F$ with $|A_1|=\cdots=|A_n|=k$. Let $p(F)$ be the additive order of the identity of $F$. It is proved that $|C|\geqslant \min{p(F),\ \ n(k-1)-mn(n-1)+1}$ if $p(F)>mn$. This conclusion refines the result of Hou and Sun.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.