Statistical early-warning indicators based on Auto-Regressive Moving-Average processes (1402.2885v1)
Abstract: We address the problem of defining early warning indicators of critical transition. To this purpose, we fit the relevant time series through a class of linear models, known as Auto-Regressive Moving-Average (ARMA(p,q)) models. We define two indicators representing the total order and the total persistence of the process, linked, respectively, to the shape and to the characteristic decay time of the autocorrelation function of the process. We successfully test the method to detect transitions in a Langevin model and a 2D Ising model with nearest-neighbour interaction. We then apply the method to complex systems, namely for dynamo thresholds and financial crisis detection.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.