Papers
Topics
Authors
Recent
2000 character limit reached

Left and right centers in quasi-Poisson geometry of moduli spaces (1402.2322v4)

Published 10 Feb 2014 in math.SG

Abstract: We introduce left central and right central functions and left and right leaves in quasi-Poisson geometry, generalizing central (or Casimir) functions and symplectic leaves from Poisson geometry. They lead to a new type of (quasi-)Poisson reduction, which is both simpler and more general than known quasi-Hamiltonian reductions. We study these notions in detail for moduli spaces of flat connections on surfaces, where the quasi-Poisson structure is given by an intersection pairing on homology.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.