Papers
Topics
Authors
Recent
2000 character limit reached

Geodesic Density Tracking with Applications to Data Driven Modeling (1402.1697v1)

Published 7 Feb 2014 in cs.SY and math.OC

Abstract: Many problems in dynamic data driven modeling deals with distributed rather than lumped observations. In this paper, we show that the Monge-Kantorovich optimal transport theory provides a unifying framework to tackle such problems in the systems-control parlance. Specifically, given distributional measurements at arbitrary instances of measurement availability, we show how to derive dynamical systems that interpolate the observed distributions along the geodesics. We demonstrate the framework in the context of three specific problems: (i) \emph{finding a feedback control} to track observed ensembles over finite-horizon, (ii) \emph{finding a model} whose prediction matches the observed distributional data, and (iii) \emph{refining a baseline model} that results a distribution-level prediction-observation mismatch. We emphasize how the three problems can be posed as variants of the optimal transport problem, but lead to different types of numerical methods depending on the problem context. Several examples are given to elucidate the ideas.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.