Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Plücker varieties and higher secants of Sato's Grassmannian (1402.1667v3)

Published 7 Feb 2014 in math.AG and math.AC

Abstract: Every Grassmannian, in its Pl\"ucker embedding, is defined by quadratic polynomials. We prove a vast, qualitative, generalisation of this fact to what we call Pl\"ucker varieties. A Pl\"ucker variety is in fact a family of varieties in exterior powers of vector spaces that, like the Grassmannian, is functorial in the vector space and behaves well under duals. A special case of our result says that for each fixed natural number k, the k-th secant variety of any Pl\"ucker-embedded Grassmannian is defined in bounded degree independent of the Grassmannian. Our approach is to take the limit of a Pl\"ucker variety in the dual of a highly symmetric space known as the infinite wedge, and to prove that up to symmetry the limit is defined by finitely many polynomial equations. For this we prove the auxilliary result that for every natural number p the space of p-tuples of infinite-by-infinite matrices is Noetherian modulo row and column operations. Our results have algorithmic counterparts: every bounded Pl\"ucker variety has a polynomial-time membership test, and the same holds for Zariski-closed, basis-independent properties of p-tuples of matrices.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.