Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements (1402.1588v1)

Published 7 Feb 2014 in math.RT, math.CT, and math.KT

Abstract: Given an artin algebra $\Lambda$ with an idempotent element $a$ we compare the algebras $\Lambda$ and $a\Lambda a$ with respect to Gorensteinness, singularity categories and the finite generation condition Fg for the Hochschild cohomology. In particular, we identify assumptions on the idempotent element $a$ which ensure that $\Lambda$ is Gorenstein if and only if $a\Lambda a$ is Gorenstein, that the singularity categories of $\Lambda$ and $a\Lambda a$ are equivalent and that Fg holds for $\Lambda$ if and only if Fg holds for $a\Lambda a$. We approach the problem by using recollements of abelian categories and we prove the results concerning Gorensteinness and singularity categories in this general setting. The results are applied to stable categories of Cohen-Macaulay modules and classes of triangular matrix algebras and quotients of path algebras.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.