Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Solution to a parabolic differential equation in Hilbert space via Feynman formula - parts I and II (1402.1313v4)

Published 6 Feb 2014 in math.FA, math-ph, and math.MP

Abstract: A parabolic partial differential equation $u'_t(t,x)=Lu(t,x)$ is considered, where $L$ is a linear second-order differential operator with time-independent coefficients, which may depend on $x$. We assume that the spatial coordinate $x$ belongs to a finite- or infinite-dimensional real separable Hilbert space $H$. Assuming the existence of a strongly continuous resolving semigroup for this equation, we construct a representation of this semigroup by a Feynman formula, i.e. we write it in the form of the limit of a multiple integral over $H$ as the multiplicity of the integral tends to infinity. This representation gives a unique solution to the Cauchy problem in the uniform closure of the set of smooth cylindrical functions on $H$. Moreover, this solution depends continuously on the initial condition. In the case where the coefficient of the first-derivative term in $L$ vanishes we prove that the strongly continuous resolving semigroup exists (this implies the existence of the unique solution to the Cauchy problem in the class mentioned above) and that the solution to the Cauchy problem depends continuously on the coefficients of the equation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.