Abelian Duality for Generalised Maxwell Theories (1402.0890v2)
Abstract: We describe a construction of generalized Maxwell theories -- higher analogues of abelian gauge theories -- in the factorization algebra formalism of Costello and Gwilliam, allowing for analysis of the structure of local observables. We describe the phenomenon of abelian duality for local observables in these theories as a form of Fourier duality, relating observables in theories with dual abelian gauge groups and inverted coupling constants in a way compatible with the local structure. We give a description of expectation values in this theory and prove that duality preserves expectation values. Duality is shown to, for instance, interchange higher analogues of Wilson and 't Hooft operators.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.