Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

Local Gaussian Regression (1402.0645v1)

Published 4 Feb 2014 in cs.LG and cs.RO

Abstract: Locally weighted regression was created as a nonparametric learning method that is computationally efficient, can learn from very large amounts of data and add data incrementally. An interesting feature of locally weighted regression is that it can work with spatially varying length scales, a beneficial property, for instance, in control problems. However, it does not provide a generative model for function values and requires training and test data to be generated identically, independently. Gaussian (process) regression, on the other hand, provides a fully generative model without significant formal requirements on the distribution of training data, but has much higher computational cost and usually works with one global scale per input dimension. Using a localising function basis and approximate inference techniques, we take Gaussian (process) regression to increasingly localised properties and toward the same computational complexity class as locally weighted regression.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube