Negative index Jacobi forms and quantum modular forms (1401.7189v8)
Abstract: In this paper, we consider the Fourier coefficients of a special class of meromorphic Jaocbi forms of negative index. Much recent work has been done on such coefficients in the case of Jacobi forms of positive index, but almost nothing is known for Jacobi forms of negative index. In this paper we show, from two different perspectives, that their Fourier coefficients have a simple decomposition in terms of partial theta functions. The first perspective uses the language of Lie super algebras, and the second applies the theory of elliptic functions. In particular, we find a new infinite family of rank-crank type PDEs generalizing the famous example of Atkin and Garvan. We then describe the modularity properties of these coefficients, showing that they are "mixed partial theta functions", along the way determining a new class of quantum modular partial theta functions which is of independent interest.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.