Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Block Successive Upper Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization (1401.7079v1)

Published 28 Jan 2014 in math.OC

Abstract: Consider the problem of minimizing the sum of a smooth convex function and a separable nonsmooth convex function subject to linear coupling constraints. Problems of this form arise in many contemporary applications including signal processing, wireless networking and smart grid provisioning. Motivated by the huge size of these applications, we propose a new class of first order primal-dual algorithms called the block successive upper-bound minimization method of multipliers (BSUM-M) to solve this family of problems. The BSUM-M updates the primal variable blocks successively by minimizing locally tight upper-bounds of the augmented Lagrangian of the original problem, followed by a gradient type update for the dual variable in closed form. We show that under certain regularity conditions, and when the primal block variables are updated in either a deterministic or a random fashion, the BSUM-M converges to the set of optimal solutions. Moreover, in the absence of linear constraints, we show that the BSUM-M, which reduces to the block successive upper-bound minimization (BSUM) method, is capable of linear convergence without strong convexity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.