Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Compressive Classification of a Mixture of Gaussians: Analysis, Designs and Geometrical Interpretation (1401.6962v1)

Published 27 Jan 2014 in cs.IT and math.IT

Abstract: This paper derives fundamental limits on the performance of compressive classification when the source is a mixture of Gaussians. It provides an asymptotic analysis of a Bhattacharya based upper bound on the misclassification probability for the optimal Maximum-A-Posteriori (MAP) classifier that depends on quantities that are dual to the concepts of diversity-order and coding gain in multi-antenna communications. The diversity-order of the measurement system determines the rate at which the probability of misclassification decays with signal-to-noise ratio (SNR) in the low-noise regime. The counterpart of coding gain is the measurement gain which determines the power offset of the probability of misclassification in the low-noise regime. These two quantities make it possible to quantify differences in misclassification probability between random measurement and (diversity-order) optimized measurement. Results are presented for two-class classification problems first with zero-mean Gaussians then with nonzero-mean Gaussians, and finally for multiple-class Gaussian classification problems. The behavior of misclassification probability is revealed to be intimately related to certain fundamental geometric quantities determined by the measurement system, the source and their interplay. Numerical results, representative of compressive classification of a mixture of Gaussians, demonstrate alignment of the actual misclassification probability with the Bhattacharya based upper bound. The connection between the misclassification performance and the alignment between source and measurement geometry may be used to guide the design of dictionaries for compressive classification.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.