Papers
Topics
Authors
Recent
Search
2000 character limit reached

Representations of derived A-infinity algebras

Published 21 Jan 2014 in math.AT | (1401.5251v2)

Abstract: The notion of a derived A-infinity algebra arose in the work of Sagave as a natural generalisation of the classical A-infinity algebra, relevant to the case where one works over a commutative ring rather than a field. We develop some of the basic operadic theory of derived A-infinity algebras, building on work of Livernet-Roitzheim-Whitehouse. In particular, we study the coalgebras over the Koszul dual cooperad of the operad dAs, and provide a simple description of these. We study representations of derived A-infinity algebras and explain how these are a two-sided version of Sagave's modules over derived A-infinity algebras. We also give a new explicit example of a derived A-infinity algebra.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.