2000 character limit reached
Weak solutions to the stationary incompressible Euler equations (1401.4301v2)
Published 17 Jan 2014 in math.AP
Abstract: We consider weak stationary solutions to the incompressible Euler equations and show that the analogue of the h-principle obtained in [5, 7] for time-dependent weak solutions continues to hold. The key difference arises in dimension d = 2, where it turns out that the relaxation is strictly smaller than what one obtains in the time-dependent case.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.