Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Lessons Learned and Results from Applying Data-Driven Cost Estimation to Industrial Data Sets (1401.4256v1)

Published 17 Jan 2014 in cs.SE

Abstract: The increasing availability of cost-relevant data in industry allows companies to apply data-intensive estimation methods. However, available data are often inconsistent, invalid, or incomplete, so that most of the existing data-intensive estimation methods cannot be applied. Only few estimation methods can deal with imperfect data to a certain extent (e.g., Optimized Set Reduction, OSR(c)). Results from evaluating these methods in practical environments are rare. This article describes a case study on the application of OSR(c) at Toshiba Information Systems (Japan) Corporation. An important result of the case study is that estimation accuracy significantly varies with the data sets used and the way of preprocessing these data. The study supports current results in the area of quantitative cost estimation and clearly illustrates typical problems. Experiences, lessons learned, and recommendations with respect to data preprocessing and data-intensive cost estimation in general are presented.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.