2000 character limit reached
The abstract Hodge-Dirac operator and its stable discretization (1401.1576v2)
Published 8 Jan 2014 in math.NA
Abstract: This paper adapts the techniques of finite element exterior calculus to study and discretize the abstract Hodge-Dirac operator, which is a square root of the abstract Hodge-Laplace operator considered by Arnold, Falk, and Winther [Bull. Amer. Math. Soc. 47 (2010), 281-354]. Dirac-type operators are central to the field of Clifford analysis, where recently there has been considerable interest in their discretization. We prove a priori stability and convergence estimates, and show that several of the results in finite element exterior calculus can be recovered as corollaries of these new estimates.