Papers
Topics
Authors
Recent
2000 character limit reached

Broken-FEEC discretizations and Hodge Laplace problems

Published 6 Sep 2021 in math.NA and cs.NA | (2109.02553v3)

Abstract: This article studies structure-preserving discretizations of Hilbert complexes with nonconforming spaces that rely on projections onto an underlying conforming subcomplex. This approach follows the conforming/nonconforming Galerkin (CONGA) method introduced in [doi.org/10.1090/mcom/3079, doi.org/10.5802/smai-jcm.20, doi.org/10.5802/smai-jcm.21] to derive efficient structure-preserving finite element schemes for the time-dependent Maxwell and Maxwell-Vlasov systems by relaxing the curl-conforming constraint in finite element exterior calculus (FEEC) spaces. Here, it is extended to the discretization of full Hilbert complexes with possibly nontrivial harmonic fields, and the properties of the CONGA Hodge Laplacian operator are investigated. By using block-diagonal mass matrices which may be locally inverted, this framework possesses a canonical sequence of dual commuting projection operators which are local, and it naturally yields local discrete coderivative operators, in contrast to conforming FEEC discretizations. The resulting CONGA Hodge Laplacian operator is also local, and its kernel consists of the same discrete harmonic fields as the underlying conforming operator, provided that a symmetric stabilization term is added to handle the space nonconformities. Under the assumption that the underlying conforming subcomplex admits a bounded cochain projection, and that the conforming projections are stable with moment-preserving properties, a priori convergence results are established for both the CONGA Hodge Laplace source and eigenvalue problems. Our theory is finally illustrated with a spectral element method, and numerical experiments are performed which corroborate our results. Applications to spline finite elements on multi-patch mapped domains are described in a related article [arXiv:2208.05238] for which the present work provides a theoretical background.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.