Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence and Stability of Discrete Exterior Calculus for the Hodge Laplace Problem in Two Dimensions (2505.08966v1)

Published 13 May 2025 in math.NA and cs.NA

Abstract: We prove convergence and stability of the discrete exterior calculus (DEC) solutions for the Hodge-Laplace problems in two dimensions for families of meshes that are non-degenerate Delaunay and shape regular. We do this by relating the DEC solutions to the lowest order finite element exterior calculus (FEEC) solutions. A Poincar\'e inequality and a discrete inf-sup condition for DEC are part of this proof. We also prove that under appropriate geometric conditions on the mesh the DEC and FEEC norms are equivalent. Only one side of the norm equivalence is needed for proving stability and convergence and this allows us to relax the conditions on the meshes.

Summary

We haven't generated a summary for this paper yet.