Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster SVD-Truncated Least-Squares Regression (1401.0417v2)

Published 2 Jan 2014 in cs.DS and math.NA

Abstract: We develop a fast algorithm for computing the "SVD-truncated" regularized solution to the least-squares problem: $ \min_{\x} \TNorm{\matA \x - \b}. $ Let $\matA_k$ of rank $k$ be the best rank $k$ matrix computed via the SVD of $\matA$. Then, the SVD-truncated regularized solution is: $ \x_k = \pinv{\matA}k \b. $ If $\matA$ is $m \times n$, then, it takes $O(m n \min{m,n})$ time to compute $\x_k $ using the SVD of \math{\matA}. We give an approximation algorithm for \math{\x_k} which constructs a rank-\math{k} approximation $\tilde{\matA}{k}$ and computes $ \tilde{\x}{k} = \pinv{\tilde\matA}{k} \b$ in roughly $O(\nnz(\matA) k \log n)$ time. Our algorithm uses a randomized variant of the subspace iteration. We show that, with high probability: $ \TNorm{\matA \tilde{\x}_{k} - \b} \approx \TNorm{\matA \x_k - \b}$ and $\TNorm{\x_k - \tilde\x_k} \approx 0. $

Citations (3)

Summary

We haven't generated a summary for this paper yet.