Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Rank Matrix Approximation in Linear Time (1410.8802v1)

Published 31 Oct 2014 in cs.CG

Abstract: $\newcommand{\MatA}{\mathcal{M}}$ $\newcommand{\eps}{\varepsilon}$ $\newcommand{\NSize}{\mathsf{N}{}}$ $\newcommand{\MatB}{\mathcal{B}}$ $\newcommand{\Fnorm}[1]{\left| {#1} \right|F}$ $\newcommand{\PrcOpt}[2]{\mu{\mathrm{opt}}\pth{#1, #2}}$ $\newcommand{\pth}[1]{\left(#1\right)}$ Given a matrix $\MatA$ with $n$ rows and $d$ columns, and fixed $k$ and $\eps$, we present an algorithm that in linear time (i.e., $O(\NSize )$) computes a $k$-rank matrix $\MatB$ with approximation error $\Fnorm{\MatA - \MatB}2 \leq (1+\eps) \PrcOpt{\MatA}{k}$, where $\NSize = n d$ is the input size, and $\PrcOpt{\MatA}{k}$ is the minimum error of a $k$-rank approximation to $\MatA$. This algorithm succeeds with constant probability, and to our knowledge it is the first linear-time algorithm to achieve multiplicative approximation.

Citations (14)

Summary

We haven't generated a summary for this paper yet.