Papers
Topics
Authors
Recent
Search
2000 character limit reached

Assessment of Customer Credit through Combined Clustering of Artificial Neural Networks, Genetics Algorithm and Bayesian Probabilities

Published 30 Dec 2013 in cs.AI | (1312.7740v1)

Abstract: Today, with respect to the increasing growth of demand to get credit from the customers of banks and finance and credit institutions, using an effective and efficient method to decrease the risk of non-repayment of credit given is very necessary. Assessment of customers' credit is one of the most important and the most essential duties of banks and institutions, and if an error occurs in this field, it would leads to the great losses for banks and institutions. Thus, using the predicting computer systems has been significantly progressed in recent decades. The data that are provided to the credit institutions' managers help them to make a straight decision for giving the credit or not-giving it. In this paper, we will assess the customer credit through a combined classification using artificial neural networks, genetics algorithm and Bayesian probabilities simultaneously, and the results obtained from three methods mentioned above would be used to achieve an appropriate and final result. We use the K_folds cross validation test in order to assess the method and finally, we compare the proposed method with the methods such as Clustering-Launched Classification (CLC), Support Vector Machine (SVM) as well as GA+SVM where the genetics algorithm has been used to improve them.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.