Topological modular forms with level structure (1312.7394v2)
Abstract: The cohomology theory known as Tmf, for "topological modular forms," is a universal object mapping out to elliptic cohomology theories, and its coefficient ring is closely connected to the classical ring of modular forms. We extend this to a functorial family of objects corresponding to elliptic curves with level structure and modular forms on them. Along the way, we produce a natural way to restrict to the cusps, providing multiplicative maps from Tmf with level structure to forms of K-theory. In particular, this allows us to construct a connective spectrum tmf_0(3) consistent with properties suggested by Mahowald and Rezk. This is accomplished using the machinery of logarithmic structures. We construct a sheaf of locally even-periodic elliptic cohomology theories, equipped with highly structured multiplication, on the log-\'etale site of the moduli of elliptic curves. Evaluating this sheaf on modular curves produces Tmf with level structure.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.