Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Primal Dual Active Set Algorithm with Continuation for Compressed Sensing (1312.7039v1)

Published 26 Dec 2013 in cs.IT, math.IT, and math.OC

Abstract: The success of compressed sensing relies essentially on the ability to efficiently find an approximately sparse solution to an under-determined linear system. In this paper, we developed an efficient algorithm for the sparsity promoting $\ell_1$-regularized least squares problem by coupling the primal dual active set strategy with a continuation technique (on the regularization parameter). In the active set strategy, we first determine the active set from primal and dual variables, and then update the primal and dual variables by solving a low-dimensional least square problem on the active set, which makes the algorithm very efficient. The continuation technique globalizes the convergence of the algorithm, with provable global convergence under restricted isometry property (RIP). Further, we adopt two alternative methods, i.e., a modified discrepancy principle and a Bayesian information criterion, to choose the regularization parameter. Numerical experiments indicate that our algorithm is very competitive with state-of-the-art algorithms in terms of accuracy and efficiency.

Citations (37)

Summary

We haven't generated a summary for this paper yet.