Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Primal Dual Active Set with Continuation Algorithm for the \ell^0-Regularized Optimization Problem (1403.0515v1)

Published 3 Mar 2014 in math.OC, cs.IT, math.IT, and stat.ML

Abstract: We develop a primal dual active set with continuation algorithm for solving the \ell0-regularized least-squares problem that frequently arises in compressed sensing. The algorithm couples the the primal dual active set method with a continuation strategy on the regularization parameter. At each inner iteration, it first identifies the active set from both primal and dual variables, and then updates the primal variable by solving a (typically small) least-squares problem defined on the active set, from which the dual variable can be updated explicitly. Under certain conditions on the sensing matrix, i.e., mutual incoherence property or restricted isometry property, and the noise level, the finite step global convergence of the algorithm is established. Extensive numerical examples are presented to illustrate the efficiency and accuracy of the algorithm and the convergence analysis.

Citations (76)

Summary

We haven't generated a summary for this paper yet.