Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Lagrangian Biduality of Sparsity Minimization Problems (1201.3674v1)

Published 18 Jan 2012 in cs.CV, cs.LG, and stat.ML

Abstract: Recent results in Compressive Sensing have shown that, under certain conditions, the solution to an underdetermined system of linear equations with sparsity-based regularization can be accurately recovered by solving convex relaxations of the original problem. In this work, we present a novel primal-dual analysis on a class of sparsity minimization problems. We show that the Lagrangian bidual (i.e., the Lagrangian dual of the Lagrangian dual) of the sparsity minimization problems can be used to derive interesting convex relaxations: the bidual of the $\ell_0$-minimization problem is the $\ell_1$-minimization problem; and the bidual of the $\ell_{0,1}$-minimization problem for enforcing group sparsity on structured data is the $\ell_{1,\infty}$-minimization problem. The analysis provides a means to compute per-instance non-trivial lower bounds on the (group) sparsity of the desired solutions. In a real-world application, the bidual relaxation improves the performance of a sparsity-based classification framework applied to robust face recognition.

Citations (3)

Summary

We haven't generated a summary for this paper yet.