Left-symmetric algebroids (1312.6526v1)
Abstract: In this paper, we introduce a notion of a left-symmetric algebroid, which is a generalization of a left-symmetric algebra from a vector space to a vector bundle. The left multiplication gives rise to a representation of the corresponding sub-adjacent Lie algebroid. We construct left-symmetric algebroids from $\mathcal O$-operators on Lie algebroids. We study phase spaces of Lie algebroids in terms of left-symmetric algebroids. Representations of left-symmetric algebroids are studied in detail. At last, we study deformations of left-symmetric algebroids, which could be controlled by the second cohomology class in the deformation cohomology.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.